Ma e a c G ade 3


```
(1) S de dee de ad g f e ea g f oca
add \(f\) e be \(g\) ac e a d be \(\quad\) b
e a- edg Ha a , a daea de ; Ea \(\quad\) d g
a \& d c,add fac ef ef
```



```
be ee aca add
(2) S de dee de ad \(\mathrm{g} f \mathrm{fac}\), beg \(g\)
    \(f a c\).S de e fac ge ea be gb f
```



```
    *a abcec dbee a \(1 / 3\) f ea a ge
b ce,b \(1 / 3 \mathrm{fa}\) bb ge a \(1 / 5 \mathrm{f}\) e a e bb beca e
```


Represent and solve problems involving multiplication and division.

be f bec $5 \mathrm{~g} \geqslant \mathrm{f} 7 \mathrm{bec}$ eac. For example, describe a context in which a total number of objects can be expressed as 57.
 * ede a 8 ae, a a be f a e e $56 \mathrm{bec} a \mathrm{e}$ ed e a ae f8 bec eac. For example, describe a context in which a number of shares or a number of groups can be expressed as 568.

4. Dee e e e be a ba d
e a ea g ee e be . For example, determine the unknown number that makes the equation true in each of the equations 8

$$
?=48,5=? \quad 3,6 \quad 6=? .
$$

Understand properties of multiplication and the relationship between multiplication and division.
5. A e f a a a a d
d de. ${ }^{2}$ Examples: If $6 \quad 4=24$ is known, then $4 \quad 6=24$ is also known.
(Commutative property of multiplication.) $3 \quad 5 \quad 2$ can be found by 3

Use place value understanding and properties of operations to perform multi-digit arithmetic. ${ }^{4}$

2. Mea eade ae d e a d a e f bec g

Represent and interpret data.

ca ed ba g a 2 . For example, draw a bar graph in which each square in the bar graph might represent 5 pets.

Geometric measurement: understand concepts of area and relate area to multiplication and to addition.

6. Mea e a ea b c \quad a e (a ec, a e, a e , aef,ad ed).
7. Rea ea ea e faca a dadd
 g,a d \quad e de e $g^{\text {ea }}$.

Reason with shapes and their attributes.

1. U de $a d a \quad a \& \quad d f f e e$ caeg e (e.g., b e ec a ge, a d e) a a ea be (e.g., a gf de), a d a e a ed a b e ca de. e a a ge ca eg (e.g., ad $a \operatorname{e}$). Rec g e $b e^{r}$, ec $a g e$, a d $a \operatorname{a}$

2. Pa a a fac e a a ea feac parts with equal area, and describe the area of each part as $1 / 4$ of the area of the shape.
