

Vector and Matrix Quantities
\square

Extend the properties of exponents to rational exponents.

1. E

- . For example, we define $5^{1 / 3}$ to be the cube root of 5 because we want $\left(5^{7 / 3}\right)^{3}=5^{(1 / 3) 3}$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal 5 .

2.

a a a

Use properties of rational and irrational numbers.

Reason quantitatively and use units to solve problems.

Perform arithmetic operations with complex numbers.

Represent complex numbers and their operations on the complex plane.

Seeing Structure in Expressions

Arithmetic with Polynomials and Rational Expressions

Creating Equations
E - E F

Rewrite rational expressions

6. $\quad \overbrace{i}^{f} q(x)+r(x) / b(x)$, a ${ }^{2}$ P; $a(x) / b(x)$

Represent and solve equations and inequalities graphically

12 a a a a a a a a a a a

COMMON CORE STATE STANDARDS for MATHEMATICS

Interpreting Functions

- \quad E

Understand the concept of a function and use function notation

Interpret functions that arise in applications in terms of the context
4. F \qquad
-
\qquad
9. C^{17}
). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.

Build a function that models a relationship between two quantities
1.

a,

example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.
(+) $\subset \boldsymbol{P}$. For example, if $T(y)$ is the temperature in the atmosphere as a function of height, and $h(t)$ is the height of a weather balloon as a function of time, then $\mathrm{T}(\mathrm{h}(\mathrm{t}))$ is the temperature at the location of the weather balloon as a function of time.
2.

Build new functions from existing functions

Include recognizing even and odd functions from their graphs and algebraic expressions for them.
4. Fa
a \quad.

example, $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{3}$ or $\mathrm{f}(\mathrm{x})=(\mathrm{x}+1) /(\mathrm{x}-1)$ for $\mathrm{x} \quad 1$

$-$
, *
Construct and compare linear, quadratic, and exponential models and solve problems

COMMON CORE STATE STANDARDS for MATHEMATICS

Congruence

k k

Circles

Expressing Geometric Properties with Equations

Geometric Measurement and Dimension

Modeling with Geometry

Find arc lengths and areas of sectors of circles

Translate between the geometric description and the equation for a conic section

1. D
2. D
3. (+) D
,
a

a
a
μ

a.

Use coordinates to prove simple geometric theorems algebraically
4.
$\boldsymbol{\mu} \quad \Pi \quad$. For For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point (1,3) lies on the circle centered at the origin and containing the point $(0,2)$.
5.

7.

Interpreting Categorical and Quantitative Data

Summarize, represent, and interpret data on a single count or measurement variable

Summarize, represent, and interpret data on two categorical and quantitative variables

Understand independence and conditional probability and use them to interpret data
 subject among math, science, and English. Estimate the probability that a randomly selected student from your school will favor science given that the student is in tenth grade. Do the same for other subjects and compare the results.

example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.

3. $(+) \mathrm{D}$
a
a
a
\uparrow

. For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes.
4. $(+) \mathrm{D}$

a
For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?

Use probability to evaluate outcomes of decisions

5. (+)
